The Arithmetic Hierarchy, Parikh’s Theorem and Related Matters

نویسنده

  • Juliette Kennedy
چکیده

1 The Arithmetic Hierarchy Our language or signature is 〈+, ·, <, 0, ′〉, denoted LPA. PA− is the theory of the positive part of discretely ordered rings in this language, consisting of e.g. the commutative, associate and distributive laws, the recursion equations for addition and multiplication, and ordering axioms. (See [2] page 16 for the exact definition of PA−.) The arithmetic hierarchy is a family of formula classes within PA and is defined as follows:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded Arithmetic, Proof Complexity and Two Papers of Parikh

This article surveys R. Parikh’s work on feasibility, bounded arithmetic and the complexity of proofs. We discuss in depth two of Parikh’s papers on these subjects and some of the subsequent progress in the areas of feasible arithmetic and lengths of proofs.

متن کامل

A Brief History of Strahler Numbers — with a Preface

The Strahler number or Horton-Strahler number of a tree, originally introduced in geophysics, has a surprisingly rich theory. We sketch some milestones in its history, and its connection to arithmetic expressions, graph traversing, decision problems for context-free languages, Parikh’s theorem, and Newton’s procedure for approximating zeros of differentiable functions.

متن کامل

Two General Results on Intuitionistic Bounded Theories

We study, within the framework of intuitionistic logic, two well-known general results of (classical logic) bounded arithmetic. Firstly, Parikh’s theorem on the existence of bounding terms for the provably total functions. Secondly, the result which states that adding the scheme of bounded collection to (suitable) bounded theories does not yield new Π2 consequences. Mathematics Subject Classifi...

متن کامل

Parikh’s theorem

This chapter will discuss Parikh’s theorem and provide a proof for it. The proof is done by induction over a set of derivation trees, and using the Parikh mappings obtained from the set of terminal derivation trees and the possible enlargement of them during derivation. Moreover, the usefulness of the theorem will be lightly addressed.

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007